1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
| class Perceptron(object): def __init__(self, input_num, activator): ''' 初始化感知器,设置输入参数的个数,以及激活函数。 激活函数的类型为double -> double ''' self.activator = activator self.weights = [0.0 for _ in range(input_num)] self.bias = 0.0 def __str__(self): ''' 打印学习到的权重、偏置项 ''' return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias) def predict(self, input_vec): ''' 输入向量,输出感知器的计算结果 ''' return self.activator( reduce(lambda a, b: a + b, map(lambda (x, w): x * w, zip(input_vec, self.weights)) , 0.0) + self.bias) def train(self, input_vecs, labels, iteration, rate): ''' 输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率 ''' for i in range(iteration): self._one_iteration(input_vecs, labels, rate) def _one_iteration(self, input_vecs, labels, rate): ''' 一次迭代,把所有的训练数据过一遍 ''' samples = zip(input_vecs, labels) for (input_vec, label) in samples: output = self.predict(input_vec) self._update_weights(input_vec, output, label, rate) def _update_weights(self, input_vec, output, label, rate): ''' 按照感知器规则更新权重 ''' delta = label - output self.weights = map( lambda (x, w): w + rate * delta * x, zip(input_vec, self.weights)) self.bias += rate * delta
def f(x): ''' 定义激活函数f ''' return 1 if x > 0 else 0 def get_training_dataset(): ''' 基于and真值表构建训练数据 ''' input_vecs = [[1,1], [0,0], [1,0], [0,1]] labels = [1, 0, 0, 0] return input_vecs, labels def train_and_perceptron(): ''' 使用and真值表训练感知器 ''' p = Perceptron(2, f) input_vecs, labels = get_training_dataset() p.train(input_vecs, labels, 10, 0.1) return p if __name__ == '__main__': and_perception = train_and_perceptron() print and_perception print '1 and 1 = %d' % and_perception.predict([1, 1]) print '0 and 0 = %d' % and_perception.predict([0, 0]) print '1 and 0 = %d' % and_perception.predict([1, 0]) print '0 and 1 = %d' % and_perception.predict([0, 1])
|